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Structures consisting of thin plates sti!ened by a system of ribs or diaphragms form a class
of structural elements of practical importance in various engineering applications.
A di!erential quadrature analysis of free vibration of plates with eccentric sti!eners is
presented. The plate and the sti!eners are treated separately. Simultaneous governing
di!erential equations are derived from the plate dynamic equilibrium, the sti!ener dynamic
equilibrium, and equilibrium and compatibility conditions along the interface of a plate
segment and a sti!ener. The plate and the sti!eners have displacements in three dimensions.
Shear forces and in-plane forces in the plate are considered to satisfy the compatibility at the
interface of a plate segment and a sti!ener. Meanwhile, in-plane inertia e!ects in the plate
and in the sti!ener are ignored. The application of the di!erential quadrature method is
demonstrated by three examples: a simply supported plate with central eccentric sti!ener,
a clamped square plate with central eccentric sti!ener, and a double-ribbed plate with all
edges clamped. The natural frequencies are compared with the experimental results, and
with the results obtained by "nite element analysis. Very good agreement was found.
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1. INTRODUCTION

Structures consisting of thin plates sti!ened by a system of ribs or diaphragms form a class
of structural elements of practical importance in various engineering applications, such as
aircraft, ship superstructures, bridge decks and ribbed #oors. Many sti!ened plates are
designed to resist vibration due to dynamic loads. A brief literature survey reveals that
a variety of methods has been proposed to study the vibration of sti!ened plates. The most
common method used in early literature was to approximate the sti!ened plates as
equivalent orthotropic plates, using the smeared sti!ener approach. In more recent
literature, with the help of high-speed computers, the plate and the sti!eners were treated
separately. Such numerical methods as the "nite element method and the "nite di!erence
method are widely used. Mukherjee and Mukhopadhyay [1] provided a comprehensive
study of the literature.

Originated by Bellman and Casti [2], the di!erential quadrature (DQ) method is
a numerical technique for initial- or/and boundary-value problems. It is based on the
approximation of a function and hence its partial derivatives with respect to the space
variables, within a domain, by a linear sum of function values at all discrete grid points.
Recently, the DQ method has been applied to such structural problems as de#ection,
buckling, and free vibration of beams and plates. The method is accurate and
computationally e$cient. It has been projected as a potential alternative to the
conventional numerical methods such as "nite element and "nite di!erence methods. An
extensive review of the application of the DQ method in computational mechanics was
0022-460X/01/120247#06 $35.00/0 ( 2001 Academic Press
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provided by Bert and Malik [3] in 1996. In this paper, the DQ method is further extended
to study the free vibration of eccentrically sti!ened plates. Comparisons are made with the
available numerical and experimental results. Very good agreement is achieved.

2. FORMULATION

2.1. FORMULATION OF THE PLATE AND THE BEAM

The plate and the sti!eners are formulated separately. Each plate segment is considered
to be uniform and isotropic, and to satisfy the Kirchho! hypothesis. The sti!ener is
considered to be a beam subjected to stress resultants from adjoining plate segments.
Co-ordinates x, y, and z are for plate segments, while xN , yN , zN , and h, where h is the torsional
displacement, are for sti!eners (Figure 1).

Correspondingly, the plate segments have displacements of u, v, and w, and the sti!eners
have uN , vN , and wN . Vertical dynamic equilibrium of a plate segment leads to
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where a subscript represents the partial derivative with respect to the variables, o is the
density of the plate, h is the thickness of the plate, and D is the #exural rigidity of the plate,
D"Eh3/[12(1!l2)], in which E is Young's modulus and l is the Poisson ratio of the plate
material.

The in-plane motions are uncoupled from the bending motion. With the in-plane inertia
ignored, the di!erential equations governing in-plane motions are
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An X-type (perpendicular to x-axis) sti!ener element between the ith and the jth plate
segments is shown in Figure 2. The equilibrium of forces in xN , yN , and zN direction leads to
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Figure 1. A typical sti!ened plate.



Figure 2. An X-type sti!ener element.

RECTANGULAR STIFFENED PLATES 249
and the equilibrium of moments in the x}z plane requires
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where e"(t!h)/2, J is the sti!ener torsional sti!ness, EI
z
and EI

x
are the sti!ener bending

sti!ness in the xN }yN and the yN }zN planes respectively, the N's and Q's are in plane and
transverse shear force resultants, and the M's are moment resultants. Similar equilibrium
equations can be written for >-type sti!eners (perpendicular to the y-axis).

The force and moment resultants can be expressed in terms of displacements [4].

2.2. BOUNDARY CONDITIONS

The boundary conditions for an edge of a thin plate are as follows.
(a) Simply supported edges (S). For x"0 and a:
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For y"0 and a:
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(b) Clamped edges (C). For x"0 and a:
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For y"0 and a:
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(c) Sti+ened edges (T). The deformation at the interface where a sti!ener and a plate
segment join must be continuous. Therefore, at the X-type T-edges, at x"0:
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2.3. DQ REPRESENTATION OF GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY

CONDITIONS

The DQ representation is demonstrated by a representative example of an X-type
single-ribbed plate. The plate is divided into two plate segments 1 and 2, and a sti!ener.
Each plate segment is of N

y
]N

x
grid, and the X-type sti!ener is of N

y
grid. In vectorized

form the displacements are
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involved, can be de"ned as
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Equations (1)}(7) for the plate and the sti!ener can be assembled as the product of
a global matrix M

G
and the global vector <

G
:
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The governing di!erential equations (18) are replaced, at the boundary points, with the
boundary conditions and rearranged; the resulting equations are
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The eigenvalues, which provide the natural frequencies, can be solved by inverse iteration
with shifting.

3. NUMERICAL EXAMPLES

Three previously reported experimental and theoretical examples are analyzed by the
DQ method for comparison. A 11]11 grid is taken for each plate segment, and 11 grid
points for a sti!ener.

The "rst example is a single-ribbed plate simply supported on all edges. A rectangular
plate with one central X-type sti!ener is considered. The geometry and the material
properties are as follows: a"0)6 m, b"0)41 m, h"0)00633 m, 2d"0)0127 m, t"0)2855 m,
E"211 GPa, l"0)3, o"7830 kg/m3. Table 1 compares the results by the DQ method
and those presented by Harik and Guo (FEM) [5], Aksu (FDM) [6], Bhimaraddi et al.
(FEM) [7], and Mukherjee and Mukhopadhyay (FEM) [8]. The agreement is excellent.

The second example is a single-ribbed square plate clamped on all edges. This example
was analyzed experimentally and theoretically by Olson and Hazell [9]. Harik [5],
Bhimaraddi et al. [7], and Mukherjee and Mukhopadhyay [8] used FEM with di!erent
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elements and mesh to study its free vibration. The geometry and the material properties are
as follows: a"b"0)2032 m; h"0)0013716 m, 2d"0)00635 m, t"0)0140716 m, E"

68)7 GPa,l"0)29, o"2823 kg/m3. The comparison of the results of the present study and
the published results is given in Table 2.

The double-ribbed sti!ened plate with all edges clamped, analyzed by Olson and Hazell
[9] theoretically and experimentally and by Mukherjee and Mukhopadhyay [8] and
Holopainen [10] theoretically is selected as the third example. The aluminum alloy plate
has the geometry as shown in Figure 3, and material properties as follows: E"68)9 GPa,
Figure 3. Double-ribbed square plate with all edges clamped.

TABLE 2

Eigenfrequencies (Hz) for single-ribbed plate with all edges clamped

Reference [9]

Mode Reference [5] Experimental Theoretical Reference [7] Reference [8] DQ

1 697)0 689 718)1 700)4 711)8 702)1
2 730)3 725 751)4 737)0 768)2 735)1
3 927)8 1376 997)4 966)6 1016)5 1004)7
4 1302)9 2069 1419)8 1380)1 1465)2 1403)6

Note: All the results except for DQ are obtained from reference [5].

TABLE 1

Eigenfrequencies (Hz) for single-ribbed plate with all edges simply supported

Mode Reference [5] Reference [6] Reference [7] Reference [8] DQ

1 253)59 254)94 250)27 257)05 252)16
2 282)02 269)46 274)49 272)10 275)44
3 513)50 511)64 517)77 524)70 522)99

Note: All the results except for DQ are obtained from reference [5].



TABLE 3

Eigenfrequencies (Hz) for double-ribbed plate with all edges clamped

Reference [9]

Mode Reference [10] Experimental Theoretical Reference [8] DQ

1 943)8 909 965)3 966)4 915)9
2 1237)9 1204 1272)3 1247)7 1242)2
3 1331)0 1319 1364)3 1396)4 1344)4
4 1361)2 1506 1418)1 1481)0 1414)1

Note: All the results except DQ are obtained from reference [10].
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l"0)3, o"2670 kg/m3. The results (see Table 3), are obtained with very good agreement
with other authors' results.

4. CONCLUSIONS

A di!erential quadrature analysis for the free vibration of eccentrically sti!ened plates is
presented. The plate and sti!eners are separated at the interface with equilibrium and
continuity conditions satis"ed. For each plate segment or sti!ener, di!erential quadrature
equivalents are obtained to represent the governing di!erential equations and boundary
conditions. The di!erential quadrature method has several advantages including numerical
accuracy and computational e$ciency, which are shown by several examples with di!erent
boundaries. Compared to other numerical methods such as "nite di!erence and "nite
element methods, to obtain accuracy of similar level, the DQ method decreases
computational e!orts signi"cantly. The results are compared with published experimental
or theoretical results. Very good agreement is found.
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